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Abstract 
Real-time Magnetic Resonance Imaging (RT-MRI) is a 
powerful method for quantitative analysis of speech. Current 
state-of-the-art methods use constrained reconstruction to 
achieve high frame rates and spatial resolution. The 
reconstruction involves two free parameters that can be 
retrospectively selected: 1) the temporal resolution and 2) the 
regularization parameter λ, which balances temporal 
regularization and fidelity to the collected MRI data. In this 
work, we study the sensitivity of derived quantitative measures 
of vocal tract function to these two parameters. Specifically, the 
cross-distance between the tongue tip and the alveolar ridge was 
investigated for different temporal resolutions (21, 42, 56 and 
83 frames per second) and values of the regularization 
parameter. Data from one subject is included. The phrase ‘one 
two three four five’ was repeated 8 times at a normal pace. The 
results show that 1) a high regularization factor leads to lower 
cross-distance values 2) using a low value for the regularization 
parameter gives poor reproducibility and 3) a temporal 
resolution of at least 42 frames per second is desirable to 
achieve good reproducibility for all utterances in this speech 
task. The process employed here can be generalized to 
quantitative imaging of the vocal tract and other body parts. 
Index Terms: MRI, real-time, image reconstruction, vocal tract 

1.   Introduction 
The human upper airway is a complex soft-tissue organ that is 
involved in several critical functions, including speech, 
swallowing and breathing. In the context of speech production, 
the upper airway is often referred to as the vocal tract, and the 
associated organs that shape it are referred to as articulators. 
Using 2D real-time magnetic resonance imaging (2D RT-MRI), 
the anatomy and dynamic function of the upper airway can be 
visualized and quantified freely in any imaging plane at high 
frame rates, without known radiation risks to the patient [1], [2]. 
Using 2D RT-MRI with simultaneous audio recording, the 
structure and function of the vocal tract can be quantified. The 
simplest method of analysis is to use average pixel intensities in 
regions of interest (ROI:s) [3]–[5]. A more sophisticated 
analysis can be performed by segmenting the air-tissue 
boundaries along the whole vocal tract [6] or segmenting 
individual articulators to acquire detailed measures of 
articulatory function [7]. 
Previous studies have used 2D RT-MRI to investigate 
articulatory timing [8], [9], vocal tract shaping in the production 
of different sounds [10], [11], articulatory setting (the vocal 
tract configuration in pauses, ready position and rest) [12], 

vocal tract shaping in professional musicians [13], [14], and 
paralinguistic mechanisms such as beatboxing [15]. 
Furthermore, potential clinical applications include velo-
pharyngeal insufficiency [16], characterizing speech post-
glossectomy [17], [18], and swallowing disorders [19]. 
A constant challenge with 2D RT-MRI is the inherent tradeoff 
between spatial and temporal resolution, the latter being crucial 
for capturing dynamic speech events [1]. Undersampling of the 
MRI image data during acquisition combined with compressed 
sensing can be used to significantly improve temporal 
resolution [2]. However, image reconstruction involves two free 
parameters; 1) the reconstructed temporal resolution and 2) a 
regularization parameter that adjusts the balance between the 
fidelity to the raw MRI data and the temporal total variation 
constraint. Previously, these parameters have been chosen 
heuristically to maximize temporal resolution and subjective 
image quality [2]. 
However, no objective measures have previously been used to 
inform the choice of the free reconstruction parameters. In this 
work, we propose the use of the reproducibility of the scans as 
the desired quantity to guide the choice of the free parameters. 
Reproducibility is an important feature for all research on the 
vocal tract, since it provides the fundamental limit of the effect 
size and inter-group differences that can be studied. 
Furthermore, reproducibility is an important factor for clinical 
applications, where quantitative measures may be used to 
inform health care decisions. 
Therefore, this work aims to explore the influence of temporal 
resolution and the reconstruction parameter λ on the mean and 
reproducibility of quantitative measures of speech derived from 
2D RT-MRI scans of the human vocal tract. 

2.   Methods 

2.1.  Study population and speech task 

The study was approved by the local institutional review board 
(IRB). Data from one healthy subject was included. The subject 
was naïve to the purpose of the study. The speech task consisted 
of counting the numbers “one-two-three-four-five”. In total, 
eight (8) repetitions were performed in the same MRI scanning 
session. 

2.2.  Magnetic resonance imaging 

All imaging was performed on a GE Signa Excite 1.5T scanner 
(General Electric, Little Chalfont, UK) with a custom eight-
channel upper airway coil [2]. The coil consists of two arrays of 

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-168165



4 channels, positioned on each side of the subject’s jaw to 
enable maximal signal from the upper airway.  
Images were acquired in the mid-sagittal plane using a bit-
reversed real-time spiral sequence based on the RTHawk 
research platform (HeartVista, Los Altos, CA, USA) [2], [20]. 
Sequence parameters were as follows: in-plane spatial 
resolution 2.4x2.4 mm; slice thickness 6 mm; TR 6 ms; TE 0.8 
ms;  Flip angle 15° and 13 spiral interleaves for full (Nyquist) 
sampling. The scan plane was manually aligned with the mid-
sagittal plane of the subject’s vocal tract. The reconstructed 
temporal resolution varied between 21 and 83 frames per 
second, as detailed below. 

2.3.  Constrained reconstruction of MRI data 

Images were reconstructed from raw data using constrained 
reconstruction based on finite differences along the temporal 
dimension [2]. The reconstructed image f is the solution to the 
optimization problem 

min
$

𝐴 𝑓 − 𝑏 )
) + 𝜆 𝐷-(𝑓) 0. (1) 

Here A is the forward model for the MRI acquisition (including 
Fourier transformation, data sampling strategy and coil 
sensitivities),  f  is the reconstructed image, b is the measured 
raw MRI data, Dt is the temporal finite difference operator, and 
λ is the regularization parameter that balances data fidelity (first 
term in Equation 1) and temporal regularization (second term in 
Equation 1). The reconstructed temporal resolution enters into 
the reconstruction through the forward model A and the 
organization of the raw data b, and the degree of temporal 
regularization through λ. 
The reconstruction optimization problem (Equation 1) was 
solved with the Berkeley Advanced Reconstruction Toolbox 
(BART) [21]–[23] using the “parallel imaging and compressed 
sensing” command (bart pics). Reconstructions were 
performed with 2, 3, 4 and 8 MRI spirals per time frame, 
resulting in corresponding temporal resolutions of 83, 56, 42 
and 21 frames per second. The regularization parameter λ was 
varied between the values 0.00025, 0.0005, 0.001, 0.0015, 
0.002, 0.004, 0.008 and 0.0012. In total, 32 reconstructions 
were performed (4 temporal resolutions and 8 levels for λ). 

To visualize the achieved balance between the temporal 
regularization and the data fidelity for the range of λ used, the 
data fidelity (first term of Equation 1) was plotted against the 
temporal regularization term (second term of Equation 2) in an 
L-curve analysis [24]. The L-curve has previously been used to 
identify the optimal value of λ by locating a distinct corner in 
the curve [24]. 

2.4.  Data analysis 

For each combination of temporal resolution and reconstruction 
parameter λ, the resulting image data was analyzed using a 
semi-automatic segmentation tool [6]. The method requires a 
manual initialization of the vocal tract mid-line, and then 
automatically segments the airway cross-distance along the 
length of the vocal tract. The same initialization was used for 
all combinations of temporal resolution and λ. Figure 1 shows a 
schematic view of the analysis. First, 90 gridlines are placed 
along the initialization of the vocal tract. The tool then 
automatically segments the airway cross-distance for each line. 

The cross-distance at the alveolar ridge was chosen as the 
target metric in this work. The rationale for this was that the 
potentially rapid motion and complex geometry of the tongue 
tip poses a challenge both to the image reconstruction and the 
segmentation method. Therefore, the cross-distance between 
the tongue and the alveolar ridge was measured as the average 
of the cross-distances of four gridlines (shown in yellow in 
Figure 1B). The average of four gridlines was taken to provide 
stability of the measures with respect to noise and segmentation 
errors. 

Each occurrence of the spoken words were automatically 
aligned using Gentle, a freely available forced alignment tool 
[https://lowerquality.com/gentle/]. For each occurrence of a 
word, the cross-distance range over time was determined, 
defined as the difference between the maximum and the 
minimum cross-distance during the word (Figure 1C). 

After determining the cross-distance range for each of the 8 
repetitions of each word, the variability was computed as 
standard deviation (SD) over the ranges. Low SD was 
interpreted as good reproducibility, and high SD as poor 
reproducibility. 

Figure 1: Data analysis. Panel A shows one frame of a RT-MRI image series. Panel B shows the semi-automatic segmentation tool 
[6]. First, the vocal tract is manually initialized (red). Grid lines are automatically placed over the whole vocal tract, and cross-

distances computed. The cross-distance at the alveolar ridge is measured as the average of the cross-distance of four gridlines. Panel 
C shows the cross-distance over time during one repetition of the word ‘one’. The cross-distance range is computed as the difference 

between the maximum and minimum distance over time for each word. 
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3.   Results 
Figure 2 shows L-curves for the reconstruction, showing the 

balance between data fidelity and temporal regularization for 
different choices of λ. No distinct corner can be found in the 
curves, giving no clear guidance in the choice of λ. Figure 3 
shows RT-MRI reconstructions using selected temporal 
resolutions and regularization parameters (λ). Visually, a lower 
temporal resolution or higher λ gives a temporally smoothed 
result.  

The semi-automatic segmentation tool gave interpretable 
results in 30/32 reconstructed image datasets (94%). The two 
reconstructions where the tool failed were for the combination 
of the lowest value of λ (λ=0.00025) and the two highest 
temporal resolutions (83.3 and 55.5 fps). 

Figure 4 shows the mean alveolar ridge cross-distance range 
over the 8 repetitions for each word.  The words ‘two’ and ‘four’ 
are not shown, for reasons of keeping the presentation clear. 
There was a clear trend towards lower mean values for higher 
λ, and a weaker trend towards higher mean values for higher 
temporal resolutions. 

Figure 5 shows quantitative reproducibility results, as 
standard deviation (SD) of the cross-distance range over the 8 
repetitions for each word. When comparing different values of 
λ, the SD increases for λ below 0.002 for the words ‘one’ and 
‘three’. When comparing different temporal resolutions, there 
are no clear trends for the words ‘one’ and ‘three’. However, for 
the word ‘five’, the SD is higher for the lowest temporal 
resolution (21 fps). 

4.   Discussion 
This work investigates the sensitivity of quantitative metrics of 
dynamic vocal tract function to choice of reconstruction 
parameters (temporal resolution and regularization parameter λ) 
for real-time vocal tract MRI using compressed sensing 
reconstruction.  
The results show that the reconstruction parameter λ has a 
significant influence on the mean of the resulting quantitative 
measures of vocal tract function, at least for the speech task and 
analysis method employed in this work. The trend towards 
lower values for higher λ suggests that temporal smoothing 
leads to underestimation of the cross-distance. Therefore, a 
sufficiently low λ is needed to capture temporal dynamics.  

Figure 2: Constrained reconstruction L-curves showing the balance between the data fidelity term (x-axis) and the temporal 
regularization (y-axis) for different choices of the regularization parameter λ. Panel A shows results for reconstructions at 
83 fps, Panel B for 56 fps, Panel C for 42 fps and Panel D for 21 fps. No clear corner can be seen in the curve, giving no 

guidance to the optimal choice of λ. 

Figure 3: Example image reconstructions at selected temporal resolutions and regularization parameters λ. To the left, one 
image frame is shown. To the right, one cross-section is shown over time from each image (Panel A, white dashed line). Lower 

temporal resolution and higher λ gives a less noisy, but temporally smoothed image.  
fps = frames per second, d = alveolar ridge cross-distance. 
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However, setting λ too low (e.g. lower than 0.002) gives 
increased variability in derived quantitative articulatory 
measures, signaling poor reproducibility. This may be due to 
increased noise and aliasing artifacts that appear for low λ, as 
observed in a previous study [2]. The increased noise may in 
turn influence the automated image analysis negatively, leading 
to poor reproducibility. To achieve high reproducibility and 
avoid potential temporal smoothing of the images, choosing 
λ=0.002 is a good tradeoff for this combination of speech task 
and automated image analysis. Other choices of λ may be 
beneficial for other speech tasks and analysis methods, and need 
further investigation. 
We found no distinct corner in the L-curve to guide the choice 
of λ. Lingala et al. [2] used a visual analysis of reconstructed 
image quality to determine an appropriate λ. However, their λ 
can not be directly compared to the one used here due to 
different normalizations of image data intensity. 
In contrast to the parameter λ, there was a weaker dependence 
on temporal resolution, both for mean and standard deviation 
results. In one of the utterances (the word ‘five’), the lowest 
temporal resolution (21 fps) gives high standard deviation, 
signaling poor reproduciblity. This may be due to fast 
movement of the tongue tip in this task that may be blurred by 
the low temporal resolution. However, it is not clear why this 

effect is not evident in the other utterances. Further 
investigation of other speech tasks is needed to determine the 
benefit of high temporal resolution, e.g. in fast and/or natural 
speech. 

5.   Conclusions 
The results of this study show that 1) the reconstruction 
parameter λ in constrained reconstruction of 2D RT-MRI can 
significantly influence quantitative measures of vocal tract 
function, 2) choosing a too small of a value for λ gives poor 
reproducibility, and 3) a reconstructed temporal resolution of at 
least 42 fps is needed to achieve good reproducibility for tongue 
tip motion for a simple scripted speech task at a normal pace. 
Even higher temporal resolution may be beneficial for fast 
and/or natural speech, or in specialized applications such as 
singing or beatboxing. 
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Figure 4: Mean of the alveolar ridge cross-distance range over 8 repetitions. In the top row, a clear trend towards lower cross-
distance ranges can be seen for the words ‘one’ and ‘three’. In the bottom row, there is a weaker trend towards higher mean cross-

distance for higher temporal resolutions for the words ‘one’ and ‘three’. 

Figure 5: Quantitative reproducibility results: standard deviation (SD) of the alveolar ridge cross-distance over 8 repetitions. In 
the top row, it can be seen that for λ smaller than 0.002 (arrows), the SD increases for the words ‘one’ and ‘three’, which 

indicates poor reproducibility. In the bottom row, no clear trends with respect to temporal resolution can be seen for the words 
‘one’ and ‘three’. However, for the word ‘five’, the SD is higher for the lowest temporal resolution (21 fps, arrow). 
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